List of publications about Parkinson's disease and fasudil


At this point, we would like to give you a brief overview of the current scientific publications on the use of fasudil in Parkinson's disease.

Please note that the literature presented here is only intended as an introduction and does not claim to be complete.



ROCK-PD Study

Wolff, A; Hapfelmeier, A, Aarsland, D.; Rascol, O.;  Wyse, R.; Remane, Y; Zimmer, J., Bidner, H.;and Lingor, P. ROCK-PD: Protokoll einer randomisierten, placebokontrollierten, doppelblinden Phase IIa-Studie zur Sicherheit, Verträglichkeit und symptomatischen Wirksamkeit des ROCK-Inhibitors Fasudil bei Patienten mit M. Parkinson; Kongress der Deutschen Gesellschaft für Neurologie, Abstr. Nr. 15; 2022.


Rho Kinase

Li, Z.; Dong, X.; Dong, X.; Wang, Z.; Liu, W.; Deng, N.; Ding, Y.; Tang, L.; Hla, T.; Zeng, R.; et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 2005, 7, 399–404. https://doi.org/10.1038/ncb1236 (link is external)

Park, J.; Arakawa-Takeuchi, S.; Jinno, S.; Okayama, H. Rho-associated kinase connects a cell cycle-controlling anchorage signal to the mammalian target of rapamycin pathway. J. Biol. Chem. 2011, 286, 23132-23141. https://doi.org/10.1074/jbc.M110.209114 (link is external).

Zhang, H.; Li, Y.; Yu, J.; Guo, M.; Meng, J.; Liu, C.; Xie, Y.; Feng, L.; Xiao, B.; Ma, C. Rho kinase inhibitor fasudil regulates microglia polarization and function. Neuroimmunomodulation 2013, 20, 313-322. https://doi.org/10.1159/000351221 (link is external).


Fasudil and Parkinson's disease

Koch, J. C., Tatenhorst, L., Roser, A. E., Saal, K. A., Tönges, L., & Lingor, P. (2018). ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacology & therapeutics, 189, 1–21. https://doi.org/10.1016/j.pharmthera.2018.03.008 (link is external)

Roser, A. E., Tönges, L., & Lingor, P. (2017). Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Frontiers in aging neuroscience, 9, 94. https://doi.org/10.3389/fnagi.2017.00094 (link is external)

Tatenhorst, L., Eckermann, K., Dambeck, V., Fonseca-Ornelas, L., Walle, H., Lopes da Fonseca, T., Koch, J. C., Becker, S., Tönges, L., Bähr, M., Outeiro, T. F., Zweckstetter, M., & Lingor, P. (2016). Fasudil attenuates aggregation of α-synuclein in models of Parkinson's disease. Acta neuropathologica communications, 4, 39. https://doi.org/10.1186/s40478-016-0310-y (link is external)

Saal, K. A., Galter, D., Roeber, S., Bähr, M., Tönges, L., & Lingor, P. (2017). Altered Expression of Growth Associated Protein-43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain pathology (Zurich, Switzerland), 27(1), 13–25. https://doi.org/10.1111/bpa.12346 (link is external)

Tönges, L., Frank, T., Tatenhorst, L., Saal, K. A., Koch, J. C., Szego, É. M., Bähr, M., Weishaupt, J. H., & Lingor, P. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease. Brain : a journal of neurology, 135(Pt 11), 3355–3370. https://doi.org/10.1093/brain/aws254 (link is external)

Robustelli, P., Ibanez-de-Opakua, A., Campbell-Bezat, C., Giordanetto, F., Becker, S., Zweckstetter, M., Pan, A. C., & Shaw, D. E. (2022). Molecular Basis of Small-Molecule Binding to α-Synuclein. Journal of the American Chemical Society, 144(6), 2501–2510. https://doi.org/10.1021/jacs.1c07591 (link is external)

Yang, Y. J., Bu, L. L., Shen, C., Ge, J. J., He, S. J., Yu, H. L., Tang, Y. L., Jue, Z., Sun, Y. M., Yu, W. B., Zuo, C. T., Wu, J. J., Wang, J., & Liu, F. T. (2020). Fasudil Promotes α-Synuclein Clearance in an AAV-Mediated α-Synuclein Rat Model of Parkinson's Disease by Autophagy Activation. Journal of Parkinson's disease, 10(3), 969–979. https://doi.org/10.3233/JPD-191909 (link is external)

Liu, F. T., Yang, Y. J., Wu, J. J., Li, S., Tang, Y. L., Zhao, J., Liu, Z. Y., Xiao, B. G., Zuo, J., Liu, W., & Wang, J. (2016). Fasudil, a Rho kinase inhibitor, promotes the autophagic degradation of A53T α-synuclein by activating the JNK 1/Bcl-2/beclin 1 pathway. Brain research, 1632, 9–18. https://doi.org/10.1016/j.brainres.2015.12.002 (link is external)

Lopez-Lopez, A.; Labandeira, C.M.; Labandeira-Garcia, J.L.; Muñoz, A. Rho kinase inhibitor fasudil reduces l-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Br. J. Pharmacol. 2020, 177, 5622-5641. https://doi.org/10.1111/bph.15275 (link is external).

Sortwell CE, Manfredsson FP, Kemp C, Gombashlampe S, Kuhn N, Paumier K, et al. Nigral neuroprotection against alpha- synuclein toxicity is provided by oral fasudil administration. San Diego, CA; p. online.


Fasudil and ALS

Koch, J. C., Kuttler, J., Maass, F., Lengenfeld, T., Zielke, E., Bähr, M., & Lingor, P. (2020). Compassionate Use of the ROCK Inhibitor Fasudil in Three Patients With Amyotrophic Lateral Sclerosis. Frontiers in neurology, 11, 173. https://doi.org/10.3389/fneur.2020.00173 (link is external)

Lingor, P., Weber, M., Camu, W., Friede, T., Hilgers, R., Leha, A., Neuwirth, C., Günther, R., Benatar, M., Kuzma-Kozakiewicz, M., Bidner, H., Blankenstein, C., Frontini, R., Ludolph, A., Koch, J. C., & ROCK-ALS Investigators (2019). ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis. Frontiers in neurology, 10, 293. https://doi.org/10.3389/fneur.2019.00293 (link is external)

Günther, R.; Balck, A.; Koch, J.C.; Nientiedt, T.; Sereda, M.; Bähr, M.; Lingor, P.; Tönges, L. Rho Kinase Inhibition with Fasudil in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis-Symptomatic Treatment Potential after Disease Onset. Front. Pharmacol. 2017, 8, 17. https://doi.org/10.3389/fphar.2017.00017 .


Fasduil and other diseases

Ruan, H.; Zhang, Y.; Liu, R.; Yang, X. The acute effects of 30 mg vs 60 mg of intravenous Fasudil on patients with congenital heart defects and severe pulmonary arterial hypertension. Congenit. Heart Dis. 2019, 14, 645-650. https://doi.org/10.1111/chd.12764 (link is external).

Hou, H.-T.; Wang, Z.-Q.; Wang, J.; Yang, Q.; He, G.-W. Antispastic Effect of Fasudil and Cocktail of Fasudil and Nitroglycerin in Internal Thoracic Artery. Ann. Thorac. Surg. 2022. https://doi.org/10.1016/j.athoracsur.2021.11.079 (link is external).

Shibuya, M.; Hirai, S.; Seto, M.; Satoh, S.; Ohtomo, E. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J. Neurol. Sci. 2005, 238, 31-39. https://doi.org/10.1016/j.jns.2005.06.003 (link is external).

Suzuki, Y.; Shibuya, M.; Satoh, S.; Sugimoto, Y.; Takakura, K. A postmarketing surveillance study of fasudil treatment after aneurysmal subarachnoid hemorrhage. Surg. Neurol. 2007, 68, 126-31; discussion 131-2. https://doi.org/10.1016/j.surneu.2006.10.037 (link is external).

Suzuki, Y.; Shibuya, M.; Satoh, S.; Sugiyama, H.; Seto, M.; Takakura, K. Safety and efficacy of fasudil monotherapy and fasudil-ozagrel combination therapy in patients with subarachnoid hemorrhage: sub-analysis of the post-marketing surveillance study. Neurol. Med. Chir. (Tokyo) 2008, 48, 241-7; discussion 247-8. https://doi.org/10.2176/nmc.48.241 (link is external).

Vicari, R.M.; Chaitman, B.; Keefe, D.; Smith, W.B.; Chrysant, S.G.; Tonkon, M.J.; Bittar, N.; Weiss, R.J.; Morales-Ballejo, H.; Thadani, U. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J. Am. Coll. Cardiol. 2005, 46, 1803-1811. https://doi.org/10.1016/j.jacc.2005.07.047 (link is external).

Fukumoto, Y.; Yamada, N.; Matsubara, H.; Mizoguchi, M.; Uchino, K.; Yao, A.; Kihara, Y.; Kawano, M.; Watanabe, H.; Takeda, Y.; et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 2013, 77, 2619-2625. https://doi.org/10.1253/circj.cj-13-0443 (link is external).